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Shell Model Calculations of Rotational Diffusion Coefficients” 

Don P. Filson and Victor A. Bloomfield 

ABSTRACT: Previous work has shown that it is possible 
to calculate the translational frictional coefficient of a 
complex structure by modelling the structure by a sur- 
face shell of spherical frictional elements. The shell 
model is here employed to calculate the rotational dif- 
fusion coefficients (Dee) of structures with cylindrical 
symmetry, using theoretical formulations of Kirkwood 
and Hearst. Kirchoff‘s law for a sphere is obtained ex- 
actly, while Dee’s calculated by this method are high by 
8 or less compared to the exact Perrin results for pro- 
late ellipsoids of revolution. Fair agreement with ex- 
periment on tobacco mosaic virus is obtained without 
explicitly introducing end effects in cylinders, which are 

R otational diffusion coefficients, measured, for ex- 
ample, by flow or electrical birefringence or dichroism, 
or by fluorescence depolarization, provide an important 
source of information on the size and shape of macro- 
molecules. In order for these coefficients to be inter- 
preted, their dependence on size and shape for a model 
closely resembling the structure actually under study 
must be understood. The hydrodynamic models which 
have been studied theoretically up to now are ellipsoids 
of revolution (Gans, 1928; Perrin, 1934), rigid rods 
(Burgers, 1938; Broersma, 1960), random coils (Zimm, 
1956), and wormlike chains of intermediate flexibility 
(Hearst, 1963). However, this range of structures by no 
means exhausts those encountered experimentally. In 

shown to be small. The extension of tail fibers is shown 
to be necessary to obtain the Do’ observed for the fast 
form of T2 bacteriophage by Maestre, if electron micro- 
scopic dimensions for the virus are used; but uniform ex- 
pansion of the head by nearly a factor of two, or length- 
ening by a factor of three, is necessary to explain that ob- 
served for the slow form. Methods for extrapolation to a 
continuous surfslce distribution are discussed. It has 
been found empirically that coarse modelling of the 
surface, followed by shrinkage of the radii of the 
frictional elements by 50%, gives in all cases investi- 
gated a value of Dee which is within 6% of the shell 
model value. 

particular, many viruses have structures of considerable 
complexity, and it has seemed worthwhile to attempt to 
extend the methods of calculation of hydrodynamic 
properties to be able to deal with these more complex 
possibilities. 

The basic theoretical foundation from which this ex- 
tension takes place is Kirkwood’s (1949, 1954; Riseman 
and Kirkwood, 1956) theory of irreversible processes in 
solutions of macromolecules. This theory treats macro- 
molecules as being composed of identical frictional ele- 
ments. Hearst (1963) has used the Kirkwood theory to 
obtain explicit expressions for the components of the 
rotational diffusion coefficient tensor (D) for a distribu- 
tion of elements having cylindrical symmetry. 

Previous work (Bloomfield et af., 1967) has demon- 
strated that the Kirkwood theory can be combined with 
a particular method of modelling by frictional ele- 

frictional coefficients of large structures of quite arbi- 
trary shape. This method of modelling, called the “shell 
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model,” represents a particle of given shape by an as- 
sembly of small spherical frictional elements covering a 
surface Of that shape. The hydrodynamic properties Of 

the assembly of frictional elements will be close to those 1650 
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of the particle of interest, and will approach them more 
and more closely as the size of the elements in the shell 
is decreased while their number is increased, thereby 
passing to a continuous surface shell. It was shown that 
this approach gave Stoke’s law for the translational 
frictional coefficients of spheres, agreed to better than 
4% with the exact results of Perrin (1936) for ellipsoids 
of revolution, and gave useful results for the transla- 
tional behavior of viruses of complex structure. In this 
communication, the shell model approach is used to 
calculate rotational diffusion coefficients for spheres and 
ellipsoids, to examine end effects on the rotational be- 
havior of tobacco mosaic virus (TMV) (Broersma, 1960), 
and to interpret electrical birefringence studies (Maestre, 
1966) on T2 bacteriophage. This approach is very well 
adapted to use of digital computers. 

Method of Calculation 
Basic Equation. The equation used for computation of 

rotational diffusion coefficients Dee is that derived by 
Hearst (1 963) 

where la, m., and n, are the particle-fixed Cartesian co- 
ordinates of element s, n. being measured along the 
cylindrical axis. 

N N 

l is the translational frictional coefficient of each ele- 
ment, and equals 6 r 7 g  for spheres, where 70 is the sol- 
vent viscosity and r the sphere radius; N is the number 
of frictional elements modelling the structure; R,t is the 
distance between elements s and t; and the prime on the 
double sum denotes omission of the terms with s = t. 
The angular brackets denote averaging over the internal 
coordinates of the particle, which for the rigid structures 
considered here is unnecessary. 

Extrapolation. For any given assembly of frictional 
elements representing a particle of given shape, Dee may 
be calculated using eq 1 and 2. A new assembly may be 
established by reducing the element radius r, so that a 
greater number of elements is necessary to represent the 
particle, and again calculated. In this way a number 
of (r, Po) “data points” may be accumulated. The con- 
tinuous shell model value of Dee may then be obtained 
by extrapolation to r = 0. 

In order for this extrapolation to be carried out with 
confidence, something should be known about the func- 
tional dependence of OBe on r .  Bloomfield et al. (1967) 
assumed that frictional elements placed with their 
centers on a spherical surface of radius Ro would in- 
crease the effective hydrodynamic radius of the particle 
by a factor proportional to r.  

(3) 

Then the translational frictional coefficient is 

f is ,  therefore, expected to be a linear function of r, so 
that the shell model value off should be accurately ob- 
tained by linear extrapolation. The numerical value of 
/?’ was 0.25, as determined from plots of calculated 
points. Modelling of nonspherical particles presents a 
more complicated picture, since 4’ might be a function 
of position, but in practice a linear extrapolation was 
found to be adequate in all cases. 

The situation is less favorable for extrapolation of 
rotational diffusion calculations. In this case there is a 
cubic dependence of rotational frictional coefficient rr 
on radius for spherical particles 

This means that a linear extrapolation of calculations 
cannot be justified; and it also means that a given in- 
crease in effective hydrodynamic radius will have a 
larger effect on Cr than onf, so that it is more important 
to guide the extrapolation properly. If R,ff given by eq 
3 is substituted into eq 5, a cubic extrapolation seems 
appropriate. On this assumption, Dee can be represented 
as a power series in r, and it seems plausible that this 
series can be truncated with sufficient accuracy beyond 
the term in r3 so that a cubic extrapolation of Dee us. r 
should also be effective. 

For nonspherical assemblies of frictional elements, the 
situation is again more complex. For a prolate ellipsoid 
of revolution with axial ratio p = alia2 (Perrin, 1934) 

where 

At high axial ratio, placement of frictional elements 
with their centers on the surface will increase a2 rela- 
tively much more than al. Neglecting the change in the 
slowly varying y@),  then 

In other words, the proper method of extrapolation may 
depend on particle shape. In the work reported here, 
linear and quadratic extrapolations have usually been 
employed, and Dee has been extrapolated rather than 
Tr .  Cubic extrapolations have not proved satisfactory, 
presumably because of point scatter. Generally, the re- 
sult of the quadratic extrapolation has been preferred 1651 
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except in cases of high point scatter where the linear ex- 
trapolation is clearly more reliable. Since different 
values are obtained by different extrapolations, an un- 
certainty of a few per cent must be attached to most of 
the reported values. 

Results 

Spheres. A computer program was written which 
placed small spherical modelling elements in parallel 
bands on a spherical surface of radius Ro. One element 
was placed at the north pole, and an integral number of 
bands were placed between the polar element and the 
equator. The frictional element radius r was chosen to 
make each element tangent to its upper and lower band 
boundaries. The maximum integral number of elements, 
evenly spaced, were placed in each band. Except in the 
band immediately below the pole element, the first ele- 
ment in each band was placed below and halfway be- 
tween the first and second elements of the band above it. 
The elements in the lower hemisphere were placed by 
inversion through the center. This procedure introduced 
a symmetry which was useful in reducing the number of 
computer calculations. 

The results of the calculation, carried out on the 
University of Illinois IBM 7094 computer, are given in 
Table I. Within the limits of uncertainty in the extrap- 

TABLE I: Rotational Diffusion of a Sphere Represented 
by the Shell Model. 

No. of Residuals 
Frictional Doooalod (linear 

r/Ro Elements Deeexact extrapolation) 

0.1736 98 0.868 -2.8 x 1 0 - 3  
0.1205 208 0.908 1 .o  x 10-2 
0.0923 358 0.929 -1.1 x 10-2 
0.0747 550 0.942 3 .5  x 10-3 
0 .0  0.998 (linear extrapolation) 
0 .0  0.999 (quadratic extrap- 

olation) 

olation, it is clear that the shell model gives the correct 
value for the rotational diffusion of a sphere. 

Bloomfield et al. (1967) have shown that the transra- 
tional properties of an assembly of frictional elements 
representing a particle are not appreciably affected by 
the random removal of elements until a large fraction of 
the elements have been removed. That is, there is little 
free draining through an assembly of frictional elements 
even when the assembly has gaps or holes. A simple 
estimate of the effect of draining in rotational motion 
may be made in the following way. For an assembly 
such as that used in the calculations reported in Table I, 
the frictional element radius r is progressively reduced 1652 

without changing the number or positions of the ele- 
ments. The new frictional element radius may be repre- 
sented as {r ,  where { 5 1. The shrinking of the frictional 
elements results in an increasingly open assembly with 
more and more draining. At the same time, since the 
frictional elements are becoming smaller, they do not 
extend out so far from the surface. These two factors 
both act todecrease {,, and at somevalue &, the assembly 
of shrunken frictional elements will have the same value 
of {? as the shell model. 

The result of one such calculation is given in Table 11. 

TABLE 11: The Effect of Shrinking Frictional Elements 
in Place. 

r/Ro = 0.0923 
4 D*@CdCd/Deesxsct 

0 . 3  
0 .4  
0 . 5  
0 . 6  
0 . 7  
0 .8  
0.9 
1 . o  

1.071 
1.020 
0.990 
0.970 
0.955 
0.944 
0.936 
0.929 

These data show that for a spherical particle F c r  = 0.48, 
at which point less than 2 4 x  of the surface is covered. 
It is apparent that the structure must be quite open be- 
fore draining becomes at all important. It has also been 
shown, in calculations not reported here, that tCr for 
spheres is essentially independent of the initial value of 
rlRo. 

Prolate Ellipsoids of Revolution. A computer program 
was written for prolate ellipsoids very much like that for 
spheres, except that in the absence of accurate analytical 
expressions which could be solved directly for the place- 
ment of frictional elements, it was necessary to place the 
bands on the ellipsoid surface by an iterative procedure. 
The results of the calculations, extrapolated to zero ra- 
dius of the modelling element, are given in Table 111. 
Since prolate ellipsoids of axial ratio greater than 10 or 
so require a very large number of frictional elements for 
adequate modelling, and therefore computer time be- 
comes excessively long, it was not found practical to go 
t~ higher axial ratios. A single assembky was created for 
an axial ratio of 15, using 822 elements, and the rota- 
tional diffusion coefficient of this assembly was deter- 
mined, but no extrapolation to a continuous surface 
distribution was attempted. The Perrin (1934) expres- 
sions (eq 6 and 7) were used to determine DoBexact. 

It is interesting that the calculated value of the rota- 
tional diffusion coefficient is too large for all axial ratios. 
The discrepancy rises to a maximum value of over 8% 
at an axial ratio of 6, and seems to level off at about 8 
for higher axial ratios. Similar behavior was found by 
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TABLE 111: Rotational Diffusion of Prolate Ellipsoids. 
Shell Model Representation. 

Axial Linear Quadratic 
Ratio Extrapolation Extrapolation 

2.0 
4.0 
5.0 
6.0 
7.0 
8.0 

10.0 
15.0 

1.028 1.005 
1.060 1.078 
1.066 1.052 
1.086 1.166 
1.085 0.883 
1.062 1.463 
1.078 1.136 
1 .078 (unextrapolated) 

Bloomfield et al. (1967) for translation. No explanation 
has yet been found for this discrepancy. 

It is seen in Table I11 that linear extrapolations were 
much less erratic than quadratic ones, presumably be- 
cause of point scatter owing to very inefficient coverage 
of the ellipsoidal surface near the poles at higher axial 
ratios. With a larger number of points, quadratic extrap- 
olation might become more useful. 

For each axial ratio, the value of the critical shrinking 
factor tC7 was estimated in the same way as was done for 
spheres. The results are given in Table IV. Allowing for 

TABLE IV: tCr as a Function of Axial Ratio p for Pro- 
late Ellipsoids. 

P t c 7 .  
1 
2 
4 
5 
6 
7 
8 

10 

0.48 
0.48 
0.53 
0.60 
0.56 
0.59 
0.77 
0.80 

a fair amount of scatter in the data from which these 
values were obtained, it seems that E,, is a slowly in- 
creasing function of axial ratio. 

Tobacco Mosaic Virus. The structure and properties of 
TMV have been extensively investigated, as summarized 
in two recent reviews (Klug and Caspar, 1960; Caspar, 
1963). It is a rodlike virus containing about 2130 iden- 
tical protein subunits and a single strand of RNA. There 
is a solvent-filled hole 40 A in diameter down the center 
of the rod. The maximum diameter of the rod is 180 A, 
but the regular grooves between the helically arranged 
protein subunits permit adjacent virus particles in 

oriented gels to approach each other more closely by 
means of an interlocking fit. In such gels, the spacing 
between the axes of adjacent particles is observed to be 
150 A, and this is the diameter which is often given for 
the virus. The electron microscopic study of Hall (1958) 
led to a value of 3020 & 50 A for the virus length. The 
rotational diffusion coefficient has been determined by 
transient electric birefringence (O’Konski and Haltner, 
1956) to be 333 =I= 13 sec-l, while flow birefringence 
studies (Boedtker and Simmons, 1958) gave a value of 
about 380 sec-l. 

We have modelled TMV in a number of ways, all of 
which gave similar results for Dee. That which most 
closely represents the actual structure of TMV is a 
stack of 116 rings of 16 spheres, each sphere 14.69 A in 
radius, with successive rings rotated about the cylinder 
axis by 11.25” to permit close packing. The outside 
diameter of each ring was 180 A, and the over-all length 
of the model was 3002 A. Doe calculated for this model 
was 410 sec-l; that for a similar model in which addi- 
tional frictional elements were placed to close off the 
ends was 399 sec-I. Quadratic extrapolation to a con- 
tinuous shell model with open ends gave 392 sec-’; with 
closed ends, 370 sec-l. Agreement with experimental re- 
sults is seen to be reasonable. A continuous shell model 
of diameter 150 A gives 421 sec-I. Calculations accord- 
ing to the Burgers (1938) and Broersma (1960) equations 
for the rotational frictional coefficients of cylinders, us- 
ing dimensions 180 X 3000 A, gave 441 and 316 sec-’, 
respectively. The Perrin (1934) eq 6 and 7 give Dag = 
489 sec-l for a prolate ellipsoid of minor axis 180 A and 
major axis 3000 A. 

We have noted above that shell model calculations of 
Dee for prolate ellipsoids yield results about 8% too 
high, as shown in Table 11. If the same discrepancy ex- 
ists for cylinders, which has not been demonstrated, 
then the “correct” DBa for TMV is 410/1.08 or 380 sec-I, 
in striking agreement with the result of Boedtker and 
Simmons (1958). On the other hand, closing the ends, 
predicted by Broersma (1960) to decrease Dee by 15%, 
is seen from these calculations to effect only about a 5 
reduction. 

The value of tCr obtained for TMV modelled as a 
cylinder with open ends was 0.38. For a cylinder with 
closed ends, tCr was found to increase regularly with de- 
creasing r from 0.48 to 0.66, a trend perhaps related to 
the difficulty in covering the ends completely and evenly 
with elements of arbitrary size. 

T2 Bacteriophage. Maestre (1966) has recently re- 
ported that T2 bacteriophage in solution shows two dis- 
tinct rotational diffusion coefficients: 555 f 54 and 11 1 
f 22 sec-l. These may be attributed to the “fast” and 
“slow” forms first observed in sedimentation (Hook 
et al., 1946; Sharp et al., 1946). The structure of T2 
phage, as observed in electron micrographs (Brenner 
et af., 1959), is shown schematically in Figure 1. Ac- 
tually there are six tail fibers rather than the four drawn, 
and they are somewhat kinked near the middle. 

The differences in s and De* between these forms have 
been attributed to extension of the tail fibers (Maestre, 
1966; Bendet et al., 1957, 1958; Lauffer and Bendet, 1653 
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MODEL T 2 - A  MODEL T2-B 

FIGURE 1: Models of T2 bacteriophage used in the 
calculation of Dee. Dimensions in angstroms. 

1962), and to a difference in permeability of the heads of 
the two forms (Cummings and Kozloff, 1960, 1962; 
Cummings, 1963). However, it has been shown (Bloom- 
field et al., 1967) that neither of these explanations can 
account for the 40 difference in s. In this circumstance, 
it was suggested (Bloomfield et a/., 1967) that the virus 
particle, particularly the slow form, must shrink on 
dehydration during preparation for electron micros- 
copy, so that the measured dimensions are too small. 
The measured Dee's can shed additional light on the 
dimensions of these forms. 

The head dimensions of model T2-A in Figure 1 are 
essentially those reported by Cummings and Kozloff 
(1960). The tail and tail fiber dimensions are those ob- 
tained by Brenner et a/ .  (1959). The tail diameter is that 
of the extended sheath, and the tail length includes the 
hexagonal base plate which appears in the electron 
micrographs at the end of the tail. The tail is attached to 
the head where the tail and head diameters are equal. 

In the program utilizing model T2-A, frictional ele- 
ments were placed in parallel, nonoverlapping bands on 
the head and tail. The top band (at the head apex) al- 
ways contained one element. Every other band had at 
least six elements. The tail fibers were modelled as 
strings of 20-A beads. Model T2-B was utilized in a 
general program applicable to any tadpole-shaped phage 
particle, with or without tail fibers. The program was 
written to read in all of the phage dimensions, as well as 
the number and disposition of fibers, as data at the time 
of program execution. Frictional elements are placed in 
much the same way as with model T2-A, but the cylin- 
drical head of T2-B permits a considerable reduction in 
computer time due to its higher symmetry. 

In the evaluation of Dee by eq 1, it is necessary to refer 
the coordinates n, to the center of frictional resistance 

(Zimm, 1956), whose position is not known a priori. 
This is the point about which rotation is easiest. The 
following method was devised for the location of that 
point. A provisional particle-fixed coordinate system is 
defined with the origin at  the center of the head. For any 
frictional element the I and m coordinates can now be 
given. These coordinates will not change as the origin 
is moved along the axis of symmetry. The n coordinate 
of the element may be given as (n + A), where n is the 
coordinate in the original provisional coordinate system 
and A is the distance through which the origin is moved 
toward the tail. Equation 1 may now be rewritten as 

where 

where U3 = N = total number of elements and 

(@Ll+)] (12) 

N N t  

* = l l = l  

It is apparent that Ul,  UZ, Us, TI, Tz, and T3 can be 
evaluated for any given assembly in a single time-con- 
suming computation after which A can be varied exten- 
sively, with very little increase in computer time, to give 
Dee as a function of A. This function can be examined to 
find the value of A which gives the maximum value of 
Dee and hence the true rotational center of the particle. 
The computer may perform this task conveniently by 
generating an extensive table of (A, Dee) data points, 
searching the table for the maximum value of Dee listed, 
fitting the points in that part of the table with a quadra- 
tic function, and then differentiating the function to lo- 
cate the maximum. 

Another problem arises from the number of frictional 
elements required to adequately model the T2 particle. 
Since the tail fiber diameter is 20 A, this is the maximum 
diameter for the spherical elements. IF the entire particle 
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is to be modelled with 20-A spheres, a total of 7699 
spheres will be required (model T2-A, fast form). The 
double sum of eq 1 requires a number of computer cal- 
culations proportional to the square of the number of 
elements. Thus, if an assembly of 500 elements requires 
1 min for calculation, an assembly of 7699 elements 
would require (7699/500)2 or 237 min, so that a direct 
calculation is to be avoided if possible. In order to bring 
computation time down to about 10 min for this case, 
two stratagems have been employed. 

The first of these stratagems takes note of the fact that 
all but 390 of these 7699 elements are in the head and 
tail. In other words, the vast majority of the terms in the 
double sum (and in a and 6)  are head-head, tail-tail, 
head-tail, and tail-head terms. The head and tail alone 
can be adequately modelled with spheres larger than 
20 A. Thus the problem is to find the variation of the 
double sum (DSM) and of (a  + /3) with r a t  a given value 
of A. It can be shown analytically that for spherical 
particles (a  + /3) is proportional to the surface density 
of elements, that is to rP2. The terms '(l,lt/R,J and 

S f  

Cx'(n.n, /Rst)  are both proportional to the square of 
s 1  

the surface density of elements, that is to r-4. One would 
expect that zxf[(l,nt - n,lJ2/RSt3]  would also be pro- 

portional to r-4. In other words, for spheres and hope- 
fully for other particles as well 

s t  

(a  + /3)r2 = constant (15) 

DSMr4 = constant (16) 

This approach was tested on the model of T2 phage 
without fibers, by comparing values of ( DaRv/kT),=o ob- 
tained by separate extrapolation of (a  + P)r2 and 
DSMr4 to r = 0, with continuous shell model values of 
(DRBv/kT) obtained in the usual way. A discrepancy of a 
per cent or so was found, as well as some uncertainty in 

TABLE v: Rotational Diffusion of T2 Phage and Its Parts. 
Model T2-A. 

D"Z"o,> D828o.w, 
fast slow 

a (sec-l) A (A) (sec-I) A (A) 

Head 
Tail 
Fiber 
Head and tail 
Whole virus 

4 4  
ai2 
3 a/4 
9~110  

(Maestre, 1966) 
Experimental 

1986 
5007 
6628 
787 408 623 415 

617 483 529 502 
508 564 440 586 
419 643 368 665 
395 666 348 690 

555 L 54 111 * 22 

I I ' I  
4700 

I I I I 

1000 2000 3000 4000 
LENGTH OF HEAD, A 

FIGURE 2: The effect of a longitudinal expansion of the 
T2 head. Model T2-B: head diameter 800 A, apex 
height 230 A, tail diameter 165 A, and tail length 1000 
A. o and + are calculated points. Key to symbols used 
in Figures 2-5: 

Fibers not extended 1 4 
Fibers extended a = 2 5 

a = "12 3 6 
Experimental values 

fast form A C 
slow form B D 

D%V, 

Horizontal lines above and below A-D represent experi- 
mental uncertainty. 

the location of the rotational center, but these are ac- 
ceptable errors. 

The second simplifying device used to reduce the 
number of computer calculations takes advantage of the 
symmetry of the model. In model T2-A, there are six 
fibers and six head faces. Furthermore, the number of 
elements in each band around the tail was reduced from 
the maximum of 25 (with r = 10 A) to 24. Thus the 
model has sixfold symmetry. By a series of transforma- 
tions which need not be detailed here, this symmetry was 
used to reduce the number of calculations by a factor 
of 6. 

The results obtained for T2 phage using model T2-A 
are given in Table V. It is clear that even complete ex- 
tension of tail fibers does not reduce De' to the observed 
value for the slow form, and that in fact the presence of 
tail fibers in the fast form is necessary to bring DRa down 
to the experimental value. It was accordingly attempted 
to find virus dimensions that would give the correct 
frictional properties for both forms. 

An initial investigation established two points. The 
first is that moderate variations in tail diameter are un- 
important. Increasing the diameter from 165 to 200 A 
effected a decrease in Do', when CY = a[4, from 579 to 1655 
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I 1 I I I 

- 

-200 

I I I 

800 1200 1600 
HEAD DIAMETER, 8, 

FIGURE 3: The effect of a uniform expansion of the T2 
head. Model T2-B: tail diameter 200 A and tail length 
1000 A. 0 and are calculated points. 

574 sec-I. This change is clearly insignificant, and prob- 
ably lies within the uncertainty of the extrapolation. 
This result was to have been expected, because of the 
dominant influence of the head on the hydrodynamic 
properties. The second point is that models T2-A and 
T2-B have similar hydrodynamic properties. The ratio 
Dee,rz-A/DeeTz-B was 1.240 for heads alone; 1.128 for head 
and tail; and 1.067 for the whole virus with fibers at 
CY = ~ 1 2 .  A ratio of about 1.240 for heads alone was to 
have been expected, since the T2-B head has a larger 
volume. However, addition of tail and fibers brings the 
ratio down to a value sufficiently close to unity that the 
greater symmetry of model T2-B, which in parts of the 
program permits reduction of the number of calculations 
by a factor of several hundred, may be used to ad- 
vantage. 

With these points established, it was possible to pro- 
ceed to a systematic variation of model size in order to 
determine those dimensions which would secure agree- 
ment with the experimental data. It was assumed that 
only the head dimensions need be varied. This assump- 
tion was suggested by the electron micrographs of 
Cummings and Kozloff (1 960), and in any case it seemed 
reasonable from a practical point of view, since the 
head dominates the hydrodynamic properties of the 
phage. 

To begin with the head was varied in two different 
ways: by a longitudinal expansion along the axis only, 
in accordance with the observations of Cummings and 
Kozloff, and by a uniform expansion without any 
change in head proportions. Translational frictional 
radii f ,  = f/67r71a (Bloomfield et af., 1967) and rotational 1656 
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FIGURE 4: The effect of a lateral expansion of the T2 
head. Model T2-B: head length 1040 A, tail diameter 
200 A, and tail length 1000 A. 0 and are calculated 
points. 

diffusion coefficients were calculated for several head 
sizes in both modes of expansion. The results are shown 
in Figures 2 and 3. Experimental translational frictional 
radii of 632 and 905 A for the fast and slow forms, re- 
spectively, were calculated from the sedimentation and 
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FIGURE 5: The effect of a subsequent longitudinal 
expansion of the T2 head. Model T2-B: head diameter 
1190 A, apex height 230 A, tail diameter 200 A, and 
tail length 1000 A. 0 and are calculated points. 
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diffusion data of Cummings and Kozloff (1960) using 
the partial specific volume obtained by Taylor (1946). 

Unfortunately, neither the longitudinal nor the uni- 
form modes of expansion can provide head dimensions 
which simultaneously account for f, and Dee of the fast 
form. For example, if the head dimensions are adjusted 
to give the experimental frictional radius of 632 A with 
a = a/2, Dee is calculated to be 283 sec-’ for longitu- 
dinal expansion and 362 sec-I for uniform expansion, 
compared to 555 sec-I for experimental. This discre- 
pancy is considerably greater in the former case, sug- 
gesting that better agreement might be obtained if 
longitudinal changes in the head were minimized. On 
the other hand, the longitudinally expanded model 
shows better agreement for the slow form. The obvious 
conclusion is that agreement with all of the experimental 
data might be approached if the head were first ex- 
panded luterully to an overall frictional radius of 632 A, 
then longitudinally to an overall frictional radius of 
YO5 A, It should be noted, however, that there is no 
other evidence supporting this picture of the expansion, 
and the electron micrographs of Cummings and Kozloff 
(1960) argue against it. 

Calculations made for this two-step method of ex- 
pansion led to the results shown in Figures 4 and 5 .  
Exact agreement with translational data for the fast 
form was achieved with head dimensions of 1040 X 
1190 A, fibers not extended. These dimensions gave 
simultaneous, though marginal, agreement with the 
rotational data. Subsequent longitudinal expansion, 
holding the head diameter constant at 1190 A, led to 
reasonably good simultaneous agreement with trans- 
lational and rotational data for the slow form with head 
dimensions of 2310 x 1190 A, tail fibers extended at an 
angle Q: = 3n/4. It might be noted that if the head di- 
ameter were made slightly smaller than 1190 A for both 
forms, it would be possible to improve the agreement 
with rotational data without introducing undue dis- 
agreement with the translational data. 

It should be remembered that the dimensions quoted 
are for the T2-B representation. The maximum head 
diameter of the corresponding T2-A representation will, 
of course, be somewhat larger. 

Discussion 

It may be concluded from these results that the “shell 
model” method of calculating rotational diffusion co- 
efficients for complex structures is both computationally 
feasible and sufficiently accurate. For asymmetric struc- 
tures such as prolate ellipsoids, Dee calculated from the 
shell model may be off by as much as 8 7, from the exact 
result. However, this discrepancy is not far from the 
range of experimental uncertainty in many determina- 
tions of rotational diffusion coefficients, and will only 
cause an error of about 3 7, in the estimation of polymer 
dimensions. It seems worthwhile remarking on the 
empirical observation, which is thus far without theore- 
tical justification, that rather coarse modelling of 
spheres, ellipsoids, and rods by frictional elements of 
radius 207, or more of the small dimension of the par- 

ticle, followed by shrinkage of the elements by a factor 
( = 0.5, gave in all cases investigated a value of Dee 
which was no more than 6% off from the shell model 
value. This circumstance permits very substantial sav- 
ings in computer time. 

The calculations on TMV do not lead to any defi- 
nite conclusions regarding the importance of end effects 
in cylindrical particles. The theory of Broersma (1%0), 
in which additional end effects are introduced, leads 
to considerably better agreement with the experimental 
results of O’Konski and Haltner (1956) than does the 
shell model. The shell model calculations, on the other 
hand, are in better accord with the results of Boedtker 
and Simmons (1958). Uncertainties in the length and 
hydrodynamic diameter of TMV particles also hinder 
comparison of theory and experiment. 

Application of these methods of calculating hydro- 
dynamic properties to T2 bacteriophage has indicated 
that the observed differences between the slow and fast 
forms cannot be attributed to tail fiber disposition or 
head permeability. Instead, substantial changes in head 
size and/or shape must be involved. It would be very 
desirable, of course, to check this conclusion by non- 
hydrodynamic methods in solution, such as light 
scattering. 

One might ask whether, with head sizes as large as 
those indicated for the slow form, there is enough pro- 
tein to cover the head surface. Cummings (1963) has 
determined that the head protein consists of about 1800 
monomers of mol wt 42,000 and ellipsoidal dimensions 
270 X 19 X 19 A. If the long axis of the ellipsoid were 
to lie in the plane of the surface, the area covered by the 
ellipsoid itself would be a(135)(9.5) or 4029 A2. If the 
ellipsoidal subunits were arranged side by side in rows, 
each ellipsoid would be assigned a rectangular area of 
(270)(19) or 5130 A2. The total area covered by 1800 
monomers would, therefore, lie between 7,250,000 and 
9,230,000 A2. If the head dimensions of the slow form 
are 3250 X 800 A (those obtained by a longitudinal ex- 
pansion), the total surface area of the head in the T2-B 
representation is 8,170,000 A2 which is in the calculated 
range. Apparently there is enough protein to cover the 
head surface, even in the slow form. The protein coat 
would be thin and presumably quite permeable to sol- 
vent, in accordance with the observations of Cummings 
and Kozloff (1 962). 
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Spectroscopic Studies on Spinach Ferredoxin and Adrenodoxin* 

Graham Palmer, Hans Brintzinger, and Ronald W. Estabrook 

ABSTRACT: Two non-heme iron proteins, adrenodoxin 
and spinach ferredoxin, which are similar to each 
other in many respects but differ in that their electron 
paramagnetic resonance (epr) signals are axially 
symmetric and rhombic, respectively, have been in- 
vestigated for their optical activity, in order to char- 
acterize further the symmetry of the ligand field of 
iron in these proteins. Circular dichroism spectra 
of the oxidized and reduced proteins were obtained 

I n recent years there has been increasing interest 
in a new family of iron proteins in which iron is not 
a component of heme, but rather appears t0 be bonded 
directly to the protein. Although there are numerous 
proteins which would nominally belong in this class, 
e.g. ,  ferritin, conalbumin, rubredoxin, the designation 

~ ~~~ ~~~~ ~~~ 

* From the Biophysics Research Division, Institute of Science 
and Technology, The University of Michigan, Ann Arbor, 
Michigan, and Department of Biophysics and Physical Bio- 
chemistry, Johnson Research Foundation, University of Penn- 
sylvania, Philadelphia, Pennsylvania. Receiued June 30, 1966. 
Supported by U. S. Public Health Research Grants GM-12176 
and GhI-12202 and by U. S.  Public Health Service Research 
Career Development Awards GM-K3-31,213 (G. P.) and GM- 

1658 ~ 3 - 4 i i i ( ~ .  w.E.). 

from 700 to 300 mp and analyzed in terms of indi- 
vidual Gaussian components. Unexpectedly, it was 
found that the optical activity of the two proteins 
is very similar, differing only by minor shifts in wave- 
length and intensity of the individual components, 
and by the occurrence of weak additional bands at 
the fringes of the spectra of ferredoxin. 

Low-temperature optical spectra of the proteins are 
given. 

non-heme iron protein (NHIP),' as this new group 
of proteins has unfortunately been labeled, is usually 
only applied to those iron proteins which liberate 
H2S on acid denaturation, Le., those which contain 
acid-labile sulfur. Furthermore, the NHIP all exhibit 
characteristic optical absorption, although the visible 
spectra are rather plain by comparison to those ob- 
tained with the heme proteins. 

Many of these NHIP are further characterized by 
unique magnetic resonance properties exhibiting a 
novel electron paramagnetic resonance (epr) signal 
at g = 1.94 after reduction. Until recently, it appeared 

Abbreviations used: NHIP, non-heme iron proteins; TPNH, 
reduced triphosphopyridine nucleotide; CD, circular dichro- 
ism; epr, electron paramagnetic resonance. 
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