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Shell Model Calculations of Rotational Diffusion Coefficients”

Don P. Filson and Victor A. Bloomfield

ABSTRACT: Previous work has shown that it is possible
to calculate the translational frictional coefficient of a
complex structure by modelling the structure by a sur-
face shell of spherical frictional elements. The shell
model is here employed to calculate the rotational dif-
fusion coefficients (D) of structures with cylindrical
symmetry, using theoretical formulations of Kirkwood
and Hearst. Kirchoff’s law for a sphere is obtained ex-
actly, while D*”s calculated by this method are high by
897 or less compared to the exact Perrin results for pro-
late ellipsoids of revolution. Fair agreement with ex-
periment on tobacco mosaic virus is obtained without
explicitly introducing end effects in cylinders, which are

Rotational diffusion coefficients, measured, for ex-
ample, by flow or electrical birefringence or dichroism,
or by fluorescence depolarization, provide an important
source of information on the size and shape of macro-
molecules. In order for these coefficients to be inter-
preted, their dependence on size and shape for a model
closely resembling the structure actually under study
must be understood. The hydrodynamic models which
have been studied theoretically up to now are ellipsoids
of revolution (Gans, 1928; Perrin, 1934), rigid rods
(Burgers, 1938; Broersma, 1960), random coils (Zimm,
1956), and wormlike chains of intermediate flexibility
(Hearst, 1963). However, this range of structures by no
means exhausts those encountered experimentally. In
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shown to be small. The extension of tail fibers is shown
to be necessary to obtain the D% observed for the fast
form of T2 bacteriophage by Maestre, if electron micro-
scopic dimensions for the virus are used; but uniform ex-
pansion of the head by nearly a factor of two, or length-
ening by a factor of three, is necessary to explain that ob-
served for the slow form. Methods for extrapolation to a
continuous surface distribution are discussed. It has
been found empirically that coarse modelling of the
surface, followed by shrinkage of the radii of the
frictional elements by 5097, gives in all cases investi-
gated a value of D which is within 6% of the shell
model value.

particular, many viruses have structures of considerable
complexity, and it has seemed worthwhile to attempt to
extend the methods of calculation of hydrodynamic
properties to be able to deal with these more complex
possibilities.

The basic theoretical foundation from which this ex-
tension takes place is Kirkwood’s (1949, 1954; Riseman
and Kirkwood, 1956) theory of irreversible processes in
solutions of macromolecules. This theory treats macro-
molecules as being composed of identical frictional ele-
ments. Hearst (1963) has used the Kirkwood theory to
obtain explicit expressions for the components of the
rotational diffusion coefficient tensor (D) for a distribu-
tion of elements having cylindrical symmetry.

Previous work (Bloomfield et al., 1967) has demon-
strated that the Kirkwood theory can be combined with
a particular method of modelling by small frictional ele-
ments to calculate with good accuracy the translational
frictional coefficients of large structures of quite arbi-
trary shape. This method of modelling, called the ‘““shell
model,” represents a particle of given shape by an as-
sembly of small spherical frictional elements covering a
surface of that shape. The hydrodynamic properties of
the assembly of {rictional elements will be close to those
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of the particle of interest, and will approach them more
and more closely as the size of the elements in the shell
is decreased while their number is increased, thereby
passing to a continuous surface shell. It was shown that
this approach gave Stoke’s law for the translational
frictional coefficients of spheres, agreed to better than
497 with the exact results of Perrin (1936) for ellipsoids
of revolution, and gave useful results for the transla-
tional behavior of viruses of complex structure. In this
communication, the shell model approach is used to
calculate rotational diffusion coefficients for spheres and
ellipsoids, to examine end effects on the rotational be-
havior of tobacco mosaic virus (TMV) (Broersma, 1960),
and to interpret electrical birefringence studies (Maestre,
1966) on T2 bacteriophage. This approach is very well
adapted to use of digital computers.

Method of Calculation

Basic Equation. The equation used for computation of
rotational diffusion coefficients D? is that derived by
Hearst (1963)

o 1 {1 4 ¢ [<1.1:>
KT (a+ B)X 87rno(a+5)s_1:_

(] o

where /, m., and s, are the particle-fixed Cartesian co-
ordinates of element s, n, being measured along the
cylindrical axis.

- T,

N

= 2 (n? @
s=1 s=1
¢ is the translational frictional coefficient of each ele-
ment, and equals 67 for spheres, where 7, is the sol-
vent viscosity and r the sphere radius; N is the number
of frictional elements modelling the structure; R, is the
distance between elements s and t; and the prime on the
double sum denotes omission of the terms with s = t.
The angular brackets denote averaging over the internal
coordinates of the particle, which for the rigid structures
considered here is unnecessary.

Extrapolation. For any given assembly of frictional
elements representing a particle of given shape, D? may
be calculated using eq 1 and 2. A new assembly may be
established by reducing the element radius », so that a
greater number of elements is necessary to represent the
particle, and D% again calculated. In this way a number
of (r, D*) ““data points” may be accumulated. The con-
tinuous shell model value of D% may then be obtained
by extrapolation to » = 0.

In order for this extrapolation to be carried out with
confidence, something should be known about the func-
tional dependence of D* on r. Bloomfield et al. (1967)
assumed that frictional elements placed with their
centers on a spherical surface of radius R, would in-
crease the effective hydrodynamic radius of the particle
by a factor proportional to r.

Ryt = Ry + B'r 3
Then the translational frictional coefficient is
S = 6mnoRest @

fis, therefore, expected to be a linear function of r, so
that the shell model value of f should be accurately ob-
tained by linear extrapolation. The numerical value of
B’ was 0.25, as determined from plots of calculated
points. Modelling of nonspherical particles presents a
more complicated picture, since 3’ might be a function
of position, but in practice a linear extrapolation was
found to be adequate in all cases.

The situation is less favorable for extrapolation of
rotational diffusion calculations. In this case there is a
cubic dependence of rotational frictional coefficient ¢{,
on radius for spherical particles

& = kT/D¥ = 87qyR3 ©)

This means that a linear extrapolation of calculations
cannot be justified; and it also means that a given in-
crease in effective hydrodynamic radius will have a
larger effect on ¢, than on f] so that it is more important
to guide the extrapolation properly. If R.:; given by eq
3 is substituted into eq 5, a cubic extrapolation seems
appropriate. On this assumption, D can be represented
as a power series in r, and it seems plausible that this
series can be truncated with sufficient accuracy beyond
the term in r3 so that a cubic extrapolation of D% vs. r
should also be effective.

For nonspherical assemblies of frictional elements, the
situation is again more complex. For a prolate ellipsoid
of revolution with axial ratio p = ay/as (Perrin, 1934)

$r = 8mneaa?/y(p) ©

where

¥p) =

3 p 2pr—1
251 [p\/pg —n(p+ Vi = 1) = 1] )

At high axial ratio, placement of frictional elements
with their centers on the surface will increase a; rela-
tively much more than a;. Neglecting the change in the
slowly varying y(p), then

Enete = (Col + B'r/az)? ®

In other words, the proper method of extrapolation may
depend on particle shape. In the work reported here,
linear and quadratic extrapolations have usually been
employed, and D” has been extrapolated rather than
{r Cubic extrapolations have not proved satisfactory,
presumably because of point scatter. Generally, the re-
sult of the quadratic extrapolation has been preferred
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except in cases of high point scatter where the linear ex-
trapolation is clearly more reliable. Since different
values are obtained by different extrapolations, an un-
certainty of a few per cent must be attached to most of
the reported values.

Results

Spheres. A computer program was written which
placed small spherical modelling elements in parallel
bands on a spherical surface of radius R,. One element
was placed at the north pole, and an integral number of
bands were placed between the polar element and the
equator. The frictional element radius » was chosen to
make each element tangent to its upper and lower band
boundaries. The maximum integral number of elements,
evenly spaced, were placed in each band. Except in the
band immediately below the pole element, the first ele-
ment in each band was placed below and halfway be-
tween the first and second elements of the band above it.
The elements in the lower hemisphere were placed by
inversion through the center. This procedure introduced
a symmetry which was useful in reducing the number of
computer calculations.

The results of the calculation, carried out on the
University of Illinois IBM 7094 computer, are given in
Table I. Within the limits of uncertainty in the extrap-

TABLE 1: Rotational Diffusion of a Sphere Represented
by the Shell Model.

No. of Residuals
Frictional ~ D%eatea (linear

r/R, Elements D%, extrapolation)
0.1736 98 0.868 —2.8X10"3
0.1205 208 0.908 1.0 X 1072
0.0923 358 0.929 —1.1 X102
0.0747 550 0.942 3.5X10"3
0.0 0.998 (linear extrapolation)
0.0 0.999 (quadratic extrap-

olation)

olation, it is clear that the shell model gives the correct
value for the rotational diffusion of a sphere.
Bloomfield et al. (1967) have shown that the transla-
tional properties of an assembly of frictional elements
representing a particle are not appreciably affected by
the random removal of elements until a large fraction of
the elements have been removed. That is, there is little
free draining through an assembly of frictional elements
even when the assembly has gaps or holes. A simple
estimate of the effect of draining in rotational motion
may be made in the following way. For an assembly
such as that used in the calculations reported in Table I,
the frictional element radius r is progressively reduced
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without changing the number or positions of the ele-
ments. The new frictional element radius may be repre-
sented as £r, where £ < 1. The shrinking of the frictional
elements results in an increasingly open assembly with
more and more draining. At the same time, since the
frictional elements are becoming smaller, they do not
extend out so far from the surface. These two factors
both act todecrease {,, and at somevalue &, the assembly
of shrunken frictional elements will have the same value
of ¢, as the shell model.

The result of one such calculation is given in Table II.

TABLE 1t: The Effect of Shrinking Frictional Elements
in Place.

#/Ry = 0.0923
Doeca ch/Dggexacb

1.071
1.020
0.990
0.970
0.955
0.944
0.936
0.929

Caad

_—OoO O 0o OoCOoOQ
[e=l~ =Re - JCN Bo NV TN S )

These data show that for a spherical particle £,, = 0.48,
at which point less than 24 97 of the surface is covered.
It is apparent that the structure must be quite open be-
fore draining becomes at all important. It has also been
shown, in calculations not reported here, that &, for
spheres is essentially independent of the initial value of
r/Ro.

Prolate Ellipsoids of Revolution. A computer program
was written for prolate ellipsoids very much like that for
spheres, except that in the absence of accurate analytical
expressions which could be solved directly for the place-
ment of frictional elements, it was necessary to place the
bands on the ellipsoid surface by an iterative procedure.
The results of the calculations, extrapolated to zero ra-
dius of the modelling element, are given in Table IIL.
Since prolate ellipsoids of axial ratio greater than 10 or
0 require a very large number of frictional elements for
adequate modelling, and therefore computer time be-
comes excessively long, it was not found practical to go
to higher axial ratios. A single assembly was created for
an axial ratio of 15, using 822 elements, and the rota-
tional diffusion coefficient of this assembly was deter-
mined, but no extrapolation to a continuous surface
distribution was attempted. The Perrin (1934) expres-
sions (eq 6 and 7) were used to determine D%,,,...

It is interesting that the calculated value of the rota-
tional diffusion coefficient is too large for all axial ratios.
The discrepancy rises to a maximum value of over 87
at an axial ratio of 6, and seems to level off at about 8 %
for higher axial ratios. Similar behavior was found by
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TABLE II: Rotational Diffusion of Prolate Ellipsoids.
Shell Model Representation.

Deecalcd/Deeexact
Axial Linear Quadratic
Ratio Extrapolation  Extrapolation
2.0 1.028 1.005
4.0 1.060 1.078
5.0 1.066 1.052
6.0 1.086 1.166
7.0 1.085 0.883
8.0 1.062 1.463
10.0 1.078 1.136
15.0 1.078 (unextrapolated)

Bloomfield er al. (1967) for translation. No explanation
has yet been found for this discrepancy.

It is seen in Table III that linear extrapolations were
much less erratic than quadratic ones, presumably be-
cause of point scatter owing to very inefficient coverage
of the ellipsoidal surface near the poles at higher axial
ratios. With a larger number of points, quadratic extrap-
olation might become more useful.

For each axial ratio, the value of the critical shrinking
factor £., was estimated in the same way as was done for
spheres. The results are given in Table IV, Allowing for

TABLE IV: §, as a Function of Axial Ratio p for Pro-
late Ellipsoids.

ECT

0.48
0.48
0.53
0.60
0.56
0.59
0.77
0.80

B

[an e S e R R A

—

a fair amount of scatter in the data from which these
values were obtained, it seems that &, is a slowly in-
creasing function of axial ratio.

Tobacco Mosaic Virus. The structure and properties of
TMY have been extensively investigated, as summarized
in two recent reviews (Klug and Caspar, 1960; Caspar,
1963). It is a rodlike virus containing about 2130 iden-
tical protein subunits and a single strand of RNA. There
is a solvent-filled hole 40 A in diameter down the center
of the rod. The maximum diameter of the rod is 180 A,
but the regular grooves between the helically arranged
protein subunits permit adjacent virus particles in

oriented gels to approach each other more closely by
means of an interlocking fit. In such gels, the spacing
between the axes of adjacent particles is observed to be
150 A, and this is the diameter which is often given for
the virus. The electron microscopic study of Hall (1958)
led to a value of 3020 = 50 A for the virus length, The
rotational diffusion coefficient has been determined by
transient electric birefringence (O’Konski and Haltner,
1956) to be 333 + 13 sec™?!, while flow birefringence
studies (Boedtker and Simmons, 1958) gave a value of
about 380 sec™1,

We have modelled TMV in a number of ways, all of
which gave similar results for D%. That which most
closely represents the actual structure of TMV is a
stack of 116 rings of 16 spheres, each sphere 14.69 A in
radius, with successive rings rotated about the cylinder
axis by 11.25° to permit close packing, The outside
diameter of each ring was 180 A, and the over-all length
of the model was 3002 A. D% calculated for this model
was 410 sec™!; that for a similar model in which addi-
tional frictional elements were placed to close off the
ends was 399 sec™!. Quadratic extrapolation to a con-
tinuous shell model with open ends gave 392 sec™!; with
closed ends, 370 sec—1. Agreement with experimental re-
sults is seen to be reasonable. A continuous shell model
of diameter 150 A gives 421 sec™!. Calculations accord-
ing to the Burgers (1938) and Broersma (1960) equations
for the rotational frictional coefficients of cylinders, us-
ing dimensions 180 X 3000 A, gave 441 and 316 sec™,
respectively. The Perrin (1934) eq 6 and 7 give D% =
489 sec~! for a prolate ellipsoid of minor axis 180 A and
major axis 3000 A.

We have noted above that shell model calculations of
D¥ for prolate ellipsoids yield results about 8% too
high, as shown in Table II. If the same discrepancy ex-
ists for cylinders, which has not been demonstrated,
then the ““correct”” D% for TMV is 410/1.08 or 380 sec™?,
in striking agreement with the result of Boedtker and
Simmons (1958). On the other hand, closing the ends,
predicted by Broersma (1960) to decrease D¥ by 157,
is seen from these calculations to effect only about a 5%
reduction.

The value of &, obtained for TMV modelled as a
cylinder with open ends was 0.38. For a cylinder with
closed ends, £, was found to increase regularly with de-
creasing » from 0.48 to 0.66, a trend perhaps related to
the difficulty in covering the ends completely and evenly
with elements of arbitrary size.

T2 Bacteriophage. Maestre (1966) has recently re-
ported that T2 bacteriophage in solution shows two dis-
tinct rotational diffusion coefficients: 555 + 54 and 111
=+ 22 sec™!. These may be attributed to the “fast’ and
“slow” forms first observed in sedimentation (Hook
et al., 1946; Sharp et al., 1946). The structure of T2
phage, as observed in electron micrographs (Brenner
et al., 1959), is shown schematically in Figure 1. Ac-
tually there are six tail fibers rather than the four drawn,
and they are somewhat kinked near the middle.

The differences in s and D% between these forms have
been attributed to extension of the tail fibers (Maestre,
1966; Bendet et al., 1957, 1958; Lauffer and Bendet,
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FIGURE 1: Models of T2 bacteriophage used in the
calculation of D?. Dimensions in angstroms.

1962), and to a difference in permeability of the heads of
the two forms (Cummings and Kozloff, 1960, 1962;
Cummings, 1963). However, it has been shown (Bloom-
field ez al., 1967) that neither of these explanations can
account for the 40 % difference in s. In this circumstance,
it was suggested (Bloomfield et al., 1967) that the virus
particle, particularly the slow form, must shrink on
dehydration during preparation for electron micros-
copy, so that the measured dimensions are too small.
The measured D?s can shed additional light on the
dimensions of these forms.

The head dimensions of model T2-A in Figure 1 are
essentially those reported by Cummings and Kozloff
(1960). The tail and tail fiber dimensions are those ob-
tained by Brenner et al. (1959). The tail diameter is that
of the extended sheath, and the tail length includes the
hexagonal base plate which appears in the electron
micrographs at the end of the tail. The tail is attached to
the head where the tail and head diameters are equal.

In the program utilizing model T2-A, frictional ele-
ments were placed in parallel, nonoverlapping bands on
the head and tail. The top band (at the head apex) al-
ways contained one element. Every other band had at
least six elements. The tail fibers were modelled as
strings of 20-A beads. Model T2-B was utilized in a
general program applicable to any tadpole-shaped phage
particle, with or without tail fibers. The program was
written to read in all of the phage dimensions, as well as
the number and disposition of fibers, as data at the time
of program execution. Frictional elements are placed in
much the same way as with model T2-A, but the cylin-
drical head of T2-B permits a considerable reduction in
computer time due to its higher symmetry.

In the evaluation of D% by eq 1, it is necessary to refer
the coordinates n, to the center of frictional resistance
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(Zimm, 1956), whose position is not known a priori.
This is the point about which rotation is easiest. The
following method was devised for the location of that
point. A provisional particle-fixed coordinate system is
defined with the origin at the center of the head. For any
frictional element the / and m coordinates can now be
given. These coerdinates will not change as the origin
is moved along the axis of symmetry. The » coordinate
of the element may be given as (n + A), where » is the
coordinate in the original provisional coordinate system
and A is the distance through which the origin is moved
toward the tail. Equation 1 may now be rewritten as

D” 1
= <
kT (a—Hi)s“{ *
¢
T, + LA + TpA? 9
Snnu(a+6)(l+ A + T )} 9)
where
B = U + GA + UA? (10)

N
= an 2;

s=1

N
Up = 2D n, (11)
s=1

where U; = N = total number of elements and
N N

I/ X
sE[Go+ G+
s=11= st
(/ nc /c)

12

< Rst >} ( )

I

T

N N
T, Z ; [:<n + ny
20, — 1) (iny — nily)
] o
Z\/ N . — 1)? jl
14
s—lt—l [:< st> < R ( )

It is apparent that Uy, U, Us, Ty, Ts, and T; can be
evaluated for any given assembly in a single time-con-
suming computation after which A can be varied exten-
sively, with very little increase in computer time, to give
D% as a function of A. This function can be examined to
find the value of A which gives the maximum value of
D% and hence the true rotational center of the particle.
The computer may perform this task conveniently by
generating an extensive table of (A, D%) data points,
searching the table for the maximum value of D? listed,
fitting the points in that part of the table with a quadra-
tic function, and then differentiating the function to lo-
cate the maximum.

Another problem arises from the number of frictional
elements required to adequately model the T2 particle.
Since the tail fiber diameter is 20 A, this is the maximum
diameter for the spherical elements. If the entire particle
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is to be modelled with 20-A spheres, a total of 7699
spheres will be required (model T2-A, fast form). The
double sum of eq 1 requires a number of computer cal-
culations proportional to the square of the number of
elements. Thus, if an assembly of 500 elements requires
1 min for calculation, an assembly of 7699 elements
would require (7699/500)% or 237 min, so that a direct
calculation is to be avoided if possible. In order to bring
computation time down to about 10 min for this case,
two stratagems have been employed.

The first of these stratagems takes note of the fact that
all but 390 of these 7699 elements are in the head and
tail. In other words, the vast majority of the terms in the
double sum (and in « and @) are head-head, tail-tail,
head-tail, and tail-head terms. The head and tail alone
can be adequately modelled with spheres larger than
20 A. Thus the problem is to find the variation of the
double sum (DSM) and of (« + 3) with r at a given value
of A. It can be shown analytically that for spherical
particles (@ + B) is proportional to the surface density
of elements, that is to r~2. The terms 2 ’(./i/Rs:) and

s ¢

ZZ’(nsm/Rst) are both proportional to the square of
s ¢
the surface density of elements, that is to #—4. One would
expect that >, 9. [(Jlne — n.)?Ry*] would also be pro-
s ¢

portional to »—4. In other words, for spheres and hope-
fully for other particles as well

(a + B)r® = constant (15)
DSMr4 = constant (16)

This approach was tested on the model of T2 phage
without fibers, by comparing values of (D%*y/kT),_, ob-
tained by separate extrapolation of (¢ + B)r? and
DSMrito r = 0, with continuous shell model values of
(D%ny/kT) obtained in the usual way. A discrepancy of a
per cent or so was found, as well as some uncertainty in

TABLE v: Rotational Diffusion of T2 Phage and Its Parts.
Model T2-A.

Dg%,ws Dg%,w,
fast slow
a (sec”) A (A) (sec™) A (A)
Head 1986
Tail 5007
Fiber 6628
Head and tail 787 408 623 415
Whole virus
/4 617 483 529 502
/2 508 564 440 586
37/4 419 643 368 665
97/10 395 666 348 690
Experimental 555 = 54 111 =22

(Maestre, 1966)
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FIGURE 2: The effect of a longitudinal expansion of the
T2 head. Model T2-B: head diameter 800 A, apex
height 230 A, tail diameter 165 A, and tail length 1000
A. O and + are calculated points. Key to symbols used
in Figures 2-5:

fi D s
Fibers not extended 1 4
Fibers extended o = 7/, 2 5
o= T/ 3 6
Experimental values
fast form A C
slow form B D

Horizontal lines above and below A-D represent experi-
mental uncertainty.

the location of the rotational center, but these are ac-
ceptable errors.

The second simplifying device used to reduce the
number of computer calculations takes advantage of the
symmetry of the model. In model T2-A, there are six
fibers and six head faces. Furthermore, the number of
elements in each band around the tail was reduced from
the maximum of 25 (with r = 10 A) to 24, Thus the
model has sixfold symmetry. By a series of transforma-
tions which need not be detailed here, this symmetry was
used to reduce the number of calculations by a factor
of 6.

The results obtained for T2 phage using model T2-A
are given in Table V. It is clear that even complete ex-
tension of tail fibers does not reduce D% to the observed
value for the slow form, and that in fact the presence of
tail fibers in the fast form is necessary to bring D% down
to the experimental value. It was accordingly attempted:
to find virus dimensions that would give the correct
frictional properties for both forms.

An initial investigation established two points. The
first is that moderate variations in tail diameter are un-
important, Increasing the diameter from 165 to 200 A
effected a decrease in D%, when o = 7/4, from 579 to
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FIGURE 3: The effect of a uniform expansion of the T2

head. Model T2-B: tail diameter 200 A and tail length
1000 A. © and O are calculated points.

574 sec™!, This change is clearly insignificant, and prob-
ably lies within the uncertainty of the extrapolation.
This result was to have been expected, because of the
dominant influence of the head on the hydrodynamic
properties. The second point is that models T2-A and
T2-B have similar hydrodynamic properties. The ratio
D%y_s/D%ry_» was 1.240 for heads alone; 1.128 for head
and tail; and 1.067 for the whole virus with fibers at
a = /2. A ratio of about 1.240 for heads alone was to
have been expected, since the T2-B head has a larger
volume. However, addition of tail and fibers brings the
ratio down to a value sufficiently close to unity that the
greater symmetry of model T2-B, which in parts of the
program permits reduction of the number of calculations
by a factor of several hundred, may be used to ad-
vantage.

With these points established, it was possible to pro-
ceed to a systematic variation of model size in order to
determine those dimensions which would secure agree-
ment with the experimental data. It was assumed that
only the head dimensions need be varied. This assump-
tion was suggested by the electron micrographs of
Cummings and Kozloff (1960), and in any case it seemed
reasonable from a practical point of view, since the
head dominates the hydrodynamic properties of the
phage.

To begin with. the head was varied in two different
ways: by a longitudinal expansion along the axis only,
in accordance with the observations of Cummings and
Kozloff, and by a uniform expansion without any
change. in head proportions. Translatienal frictional
radii f; = f/6mn, (Bloomfield er al., 1967) and rotational
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diffusion coefficients were calculated for several head
sizes in both modes of expansion. The results are shown
in Figures 2 and 3. Experimental translational frictional
radii of 632 and 905 A for the fast and slow forms, re-
spectively, were calculated from the sedimentation and
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FIGURE 5: The effect of a subsequent longitudinal

expansion of the T2 head. Model T2-B: head diameter

1190 A, apex height 230 A, tail diameter 200 A, and

tail length 1000-A. O and O are calculated points.
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diffusion data of Cummings and Kozloff (1960) using
the partial specific volume obtained by Taylor (1946).

Unfortunately, neither the longitudinal nor the uni-
form modes of expansion can provide head dimensions
which simultaneously account for £, and D% of the fast
form. For example, if the head dimensions are adjusted
to give the experimental frictional radius of 632 A with
a = /2, D¥ is calculated to be 283 sec~! for longitu-
dinal expansion and 362 sec™! for uniform expansion,
compared to 555 sec™! for experimental. This discre-
pancy is considerably greater in the former case, sug-
gesting that better agreement might be obtained if
longitudinal changes in the head were minimized. On
the other hand, the longitudinally expanded model
shows better agreement for the slow form. The obvious
conclusion is that agreement with all of the experimental
data might be approached if the head were first ex-
panded laterally to an overall frictional radius of 632 A,
then longitudinally to an overall frictional radius of
905 A. It should be noted, however, that there is no
other evidence supporting this picture of the expansion,
and the electron micrographs of Cummings and Kozloff
(1960) argue against it.

Calculations made for this two-step method of ex-
pansion led to the results shown in Figures 4 and 5.
Exact agreement with translational data for the fast
form was achieved with head dimensions of 1040 X
1190 A, fibers not extended. These dimensions gave
simultaneous, though marginal, agreement with the
rotational data. Subsequent longitudinal expansion,
holding the head diameter constant at 1190 A, led to
reasonably good simultaneous agreement with trans-
lational and rotational data for the slow form with head
dimensions of 2310 X 1190 A, tail fibers extended at an
angle o« = 37/4. It might be noted that if the head di-
ameter were made slightly smaller than 1190 A for both
forms, it would be possible to improve the agreement
with rotational data without introducing undue dis-
agreement with the translational data.

It should be remembered that the dimensions quoted
are for the T2-B representation. The maximum head
diameter of the corresponding T2-A representation will,
of course, be somewhat larger.

Discussion

It may be concluded from these results that the “shell
model”” method of calculating rotational diffusion co-
efficients for complex structures is both computationally
feasible and sufficiently accurate. For asymmetric struc-
tures such as prolate ellipsoids, D¥ calculated frem the
shell model may be off by as much as 8 % from the exact
result. However, this discrepancy is not far from the
range of experimental uncertainty in many determina-
tions of rotational diffusion coefficients, and will only
cause an error of about 397 in the estimation of polymer
dimensions. It seems worthwhile remarking on the
empirical observation, which is thus far without theore-
tical justification, that rather coarse modelling of
spheres, ellipsoids, and rods by frictional elements of
radius 209 or more of the small dimension of the par-

ticle, followed by shrinkage of the elements by a factor
£ = 0.5, gave in all cases investigated a value of D%
which was no more than 6%} off from the shell model
value. This circumstance permits very substantial sav-
ings in computer time.

The calculations on TMV do not lead to any defi-
nite conclusions regarding the importance of end effects
in cylindrical particles. The theory of Broersma (1960),
in which additional end effects are introduced, leads
to considerably better agreement with the experimental
results of O’Konski and Haltner (1956) than does. the
shell model. The shell model calculations, on the other
hand, are in better accord with the results of Boedtker
and Simmons (1958). Uncertainties in the length and
hydrodynamic diameter of TMV particles also hinder
comparison of theory and experiment.

Application of these methods of calculating hydro-
dynamic properties to T2 bacteriophage has indicated
that the observed differences between the slow and fast
forms cannot be attributed to tail fiber disposition or
head permeability. Instead, substantial changes in head
size and/or shape must be involved. It would be very
desirable, of course, to check this conclusion by non-
hydrodynamic methods in solution, such as light
scattering.

One might ask whether, with head sizes as large as
those indicated for the slow form, there is enough pro-
tein to cover the head surface. Cummings (1963) has
determined that the head protein consists of about 1800
monomers of mol wt 42,000 and ellipsoidal dimensions
270 X 19 X 19 A. If the long axis of the ellipsoid were
to lie in the plane of the surface, the area covered by the
ellipsoid itself would be w(135)(9.5) or 4029 A?, If the
ellipsoidal subunits were arranged side by side in rows,
each ellipsoid would be assigned a rectangular area of
(270)(19) or 5130 A® The total area covered by 1800
monomers would, therefore, lie between 7,250,000 and
9,230,000 A2 If the head dimensions of the slow form
are 3250 X 800 A (those obtained by a longitudinal ex-
pansion), the total surface area of the head in the T2-B
representation is 8,170,000 A2 which is in the calculated
range. Apparently there is enough protein to cover the
head surface, even in the slow form. The protein coat
would be thin and presumably quite permeable to sol-
vent, in accordance with the observations of Cummings
and Kozloff (1962).
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Spectroscopic Studies on Spinach Ferredoxin and Adrenodoxin®

Graham Palmer, Hans Brintzinger, and Ronald W. Estabrook

ABSTRACT: Two non-heme iron proteins, adrenodoxin
and spinach ferredoxin, which are similar to each
other in many respects but differ in that their electron
paramagnetic resonance (epr) signals are axially
symmetric and rhombic, respectively, have been in-
vestigated for their optical activity, in order to char-
acterize further the symmetry of the ligand field of
iron in these proteins. Circular dichroism spectra
of the oxidized and reduced proteins were obtained

In recent years there has been increasing interest
in a new family of iron proteins in which iron is not
a component of heme, but rather appears te be bonded
directly to the protein. Although there are numerous
proteins which would nominally belong in this class,
e.g., ferritin, conalbumin, rubredoxin, the designation
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PALMER, BRINTZINGER, AND ESTABROOK

from 700 to 300 mu and analyzed in terms of indi-
vidual Gaussian components. Unexpectedly, it was
found that the optical activity of the two proteins
is very similar, differing only by minor shifts in wave-
length and intensity of the individual components,
and by the occurrence of weak additional bands at
the fringes of the spectra of ferredoxin.

Low-temperature optical spectra of the proteins are
given,

non-heme iron protein (NHIP),! as this new group
of proteins has unfortunately been labeled, is usually
only applied to those iron proteins which liberate
H.S on acid denaturation, i.e., those which contain
acid-labile sulfur. Furthermore, the NHIP all exhibit
characteristic optical absorption, although the visible
spectra are rather plain by comparison to those ob-
tained with the heme proteins.

Many of these NHIP are further characterized by
unique magnetic resonance properties exhibiting a
novel electron paramagnetic resonance (epr) signal
at g = 1.94 after reduction. Until recently, it appeared

1 Abbreviations used: NHIP, non-heme iron proteins; TPNH,
reduced triphosphopyridine nucleotide; CD, circular dichro-
ism; epr, electron paramagnetic resonance.



